矩形的性质与判定是怎样的?
01
矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;四个角都是直角;对角线相等;具有不稳定性(易变形)。判定方法:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形;对角线相等且互相平分的四边形是矩形。
矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;四个角都是直角;对角线相等;具有不稳定性(易变形)。判定方法:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形;对角线相等且互相平分的四边形是矩形。
宽与长的比约为0.618的矩形叫做黄金矩形。黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。
矩形公式
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)(注:a为长,b为宽)
本文内容由互联网用户自发贡献,该文观点仅代表作者本人。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 203304862@qq.com
本文链接:https://jinnalai.com/wenda/443.html