1. 主页 > 用户投稿

无限小数和循环小数的区别举例(无限小数和循环小数的区别是什么)

定义,范围不同。一.无限小数范围大于循环小数。无限小数包含循环小数。循环小数是无限小数,但无限小数不一定是循环小数。无限循环小数的位数是潜无穷而不能是实无穷。它本质上表示一个无限趋近于某个数字的小数形式。而无限小数又分无限循环小数与无限不循环小数两类

定义,范围不同。

一.无限小数范围大于循环小数。无限小数包含循环小数。循环小数是无限小数,但无限小数不一定是循环小数。无限循环小数的位数是潜无穷而不能是实无穷。它本质上表示一个无限趋近于某个数字的小数形式。而无限小数又分无限循环小数与无限不循环小数两类。

二.“无限趋近”也就是变量,所以无限循环小数并不是一个精确的数字。换言之,“无限循环小数”并不是一个小数,它是一个函数,它无限趋近于某个数字。

三.无限不循环小数的存在是理论证明的,因为是不可能直接验证的。理论上是先证明:两个整数的商一定是有限小数或者无限循环小数。再证明每个无限循环小数都能用两个整数的商表示。接下来证明存在某个数不可能等于两个整数的商。那么这个数就一定不是有限小数或者无限循环小数。

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 203304862@qq.com

本文链接:https://jinnalai.com/n/92493.html

联系我们

在线咨询:点击这里给我发消息

微信号:

工作日:9:30-18:30,节假日休息