1. 主页 > 用户投稿

二次函数的对称轴公式怎么来的(二次函数的对称轴公式是什么)

二次函数的对称轴公式是x=-b/2a。其中,a表示的是二次函数y=ax^2+bx+c的二次项系数,b是一次项系数,但当二次函数是顶点式y=a(x-h)^2+k时,其对称轴公式是x=h。

二次函数的相关性质

对于二次函数y=ax^2+bx+c

其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

其中x1,2=-b±√b^2-4ac

顶点式:y=a(x-h)^2+k

[抛物线的顶点P(h,k)]

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 203304862@qq.com

本文链接:https://jinnalai.com/n/64338.html

联系我们

在线咨询:点击这里给我发消息

微信号:

工作日:9:30-18:30,节假日休息